

Exploring on Salesforce

Exploring tips & tricks learned on Salesforce

Pages

	
Home

	
Lightning Web Components

	
Salesforce Certifications

	
B2B Commerce Lightning

Sunday, October 11, 2020

Generate PDF from Salesforce Lightning Web Component

Motivation behind this

I have been looking for this option to generate PDF file from Lightning Web Component (LWC) quite often. Salesforce didn't provide any support to render page or component as pdf (like Visualforce) in LWC. So, tried a find an option to do so.

Without using external JavaScript library, I have tried to achieve here. This concept can be leveraged for any use case for pdf generation.

Use Case

Business has requirement to send user input data or data fetched from database to be saved as pdf format.

Developer wants to build with LWC.

Possible End Result

After building the use case, it will perform the functionality as following video:

Solution Approach

The main challenges with this use case:

	Till today, Salesforce doesn't provide any JS library to display page as pdf
	If we try to use Visualforce with renderAs="pdf" with embedding LWC into it then it will not work, because this doesn't support any JavaScript to be included.
	There are many third party JS library can be used but maintaining that is a challenge.

Approach has been taken following way:
	Create a LWC component adding lightning-input-rich-text field. This field has value attribute which returns the HTML content (this is main trick)
	Create a Visualforce page with renderAs="pdf" attribute and use those HTML text as value of apex:outputText with escape="false". Here, visualforce has been used only for pdf generation, nothing else. So it will be very slim.
	When we click on "Save As PDF" button it will implicitly call the apex class' method and use the PageReference of the visualforce and save this body content as pdf.

It's simple.

displayRichTextComponent:

displayRichTextComponent.html will prepare a screen like this:

Code as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
	<template>
 <lightning-card>
 <lightning-input-rich-text
 placeholder="Type something interesting"
 formats={allowedFormats}
 value={myVal}>
 </lightning-input-rich-text>
 <lightning-button label="Save as PDF"
 onclick={saveAsPdf}>
 </lightning-button>
 <lightning-button label="Do Something"
 onclick={handleClick}>
 </lightning-button>
 </lightning-card>
</template>

Few notable points on the above HTML:

	lightning-input-rich-text supports those format of font, size, image etc. Refer Documentation
	value attribute of lightning-input-rich-text shows initial data
	Save as PDF button click event calls saveAsPdf method.
	Clicking on "Do Something" button, replaces any selected text with "Journey to Salesforce" with defined format with setRangeText() method, which is still in beta (Winter 21 release)

displayRichTextComponent.js

Entire code as below

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
	import { LightningElement } from 'lwc';
import generatePDF from '@salesforce/apex/DisplayRichTextHelper.generatePDF';
import { ShowToastEvent } from 'lightning/platformShowToastEvent';

export default class DisplayRichTextComponent extends LightningElement {
 allowedFormats = ['font', 'size', 'bold', 'italic', 'underline', 'strike',
 'list', 'indent', 'align', 'link', 'image', 'clean', 'table', 'header', 'color',
 'background','code','code-block'];

 //this method will display initial text
 get myVal() {
 return '**Generate PDF using LWC Component**';
 }

 attachment; //this will hold attachment reference

 /*This method extracts the html from input rich text
 and pass this to apex class' method via implcit call
 */
 saveAsPdf(){
 const editor = this.template.querySelector('lightning-input-rich-text');

 //implicit calling apex method
 generatePDF({txtValue: editor.value})
 .then((result)=>{
 this.attachment = result;
 console.log('attachment id=' + this.attachment.Id);
 //show success message
 this.dispatchEvent(
 new ShowToastEvent({
 title: 'Success',
 message: 'PDF generated successfully with Id:' + this.attachment.Id,
 variant: 'success',
 }),
);
 })
 .catch(error=>{
 //show error message
 this.dispatchEvent(
 new ShowToastEvent({
 title: 'Error creating Attachment record',
 message: error.body.message,
 variant: 'error',
 }),
);
 })
 }

 /*
 This method updates the selected text with defined format
 */
 handleClick() {
 const editor = this.template.querySelector('lightning-input-rich-text');
 const textToInsert = 'Journey to Salesforce'
 editor.setRangeText(textToInsert, undefined, undefined, 'select')
 editor.setFormat({bold: true, size:24, color: 'green', align: 'center',});
 }
}

Now, let's talk about visualforce page

renderAsPdf.page

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
	<apex:page controller="DisplayPDFController" renderAs="pdf"
		 applyHtmlTag="false" showHeader="false" cache="true" readOnly="true" >
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <style>
 @page {
 size: a4 portrait;
 padding-left: 2px;
 padding-right: 2px;
 }
 </style>
 </head>
 <apex:outputText value = "{!displayText}" escape = "false"/>
 </html>
</apex:page>

You can see apex:outputText is used to display content, be sure to escape. I have added a style to display it as portrait with some padding option.

Now, see Visualforce Controller

DisplayPDFController.cls

	1
2
3
4
5
6
7
8
	public with sharing class DisplayPDFController {

 public String displayText {get; set;}
 public DisplayPDFController() {
 displayText = String.escapeSingleQuotes(
 ApexPages.currentPage().getParameters().get('displayText'));
 }
}

In the constructor, values are assigned to displayText. It can be done in page action method.

Finally, the Apex Class which is getting called from js file which actually creates the pdf file.

DisplayRichTextHelper.cls

Here, based on PageReference we are getting the page content which is being converted to pdf using getContentAspdf() method.

When we initially try to save attachment, we could face this below error if (cacheable=true) is used with @AuraEnabled

Too many DML statements: 1 out of 0 Error

which means that component is readonly and it doesn't allow to perform DML operation.

That's why cacheable=true is omitted.

The file is getting attached to a contact record. For sake of brevity, error handling has been omitted and hardcoded Contact Id has been used.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
	public with sharing class DisplayRichTextHelper {

 @AuraEnabled
 public static Attachment generatePDF(String txtValue){

 Pagereference pg = Page.renderAsPDF;
 pg.getParameters().put('displayText', txtValue);

 Contact con = new Contact(Id='0032v00002ypAntAAE');
 Attachment objAttachment = new Attachment();
 objAttachment.Name = 'J2S.pdf';
 objAttachment.ParentId = con.Id;
 objAttachment.Body = pg.getContentaspdf();
 objAttachment.IsPrivate = false;
 insert objAttachment;
 return objAttachment;
 }

}

Final pdf

The output is showing based on the element added into the rich text field.

meta files should include where this component will be available.

Create a Lightning App Builder page with one region and place this component and run the application, it will display the screen as above.

This concept can be leveraged easily at any project. For example, capturing fields from screen, then display results with some formats into the rich text box and finally generating pdf.

We are done and thanks for reading.

References

	Lightning Web Components Developer Guide
	Salesforce Lightning Web Components Cheat Sheet

Further Reading

	Pagination using Salesforce Lightning Web Components with array slicing
	Easy way of building Multi-select Lookup Component using Lightning Web Components
	Developing Suggested Cases Component using Lightning Web Components firing SOSL query
	Capture Signature using HTML Canvas inside Salesforce Lightning Web Components
	Describe Objects and Retrieve Records using Salesforce Lightning Web Components flavored with Dynamic Datatable

	Drag and Drop functionality using Salesforce Lightning Web Components leveraging pub-sub event propagation

	Display Google Map using Salesforce Lightning Web Components leveraging modern JavaScript

	Display Combobox values by Lightning Web Components and propagating events to Parent Aura Components

	Salesforce Lightning Web Components Cheat Sheet

Posted by

Santanu

at
1:46 AM

Email ThisBlogThis!Share to TwitterShare to FacebookShare to Pinterest

Labels:
Generate pdf,
Lightning Web Components

10 comments:

	
Resly MathewsOctober 11, 2020 at 6:42 PM
Great article Shantanu. I agree its a shame salesforce does not provide any native support around pdf. While visualforce lets you render as pdf, that's where the buck stops. I've had requirements where we have had to split pdf documents, merge pdf documents (prior to emailing/faxing), and we resorted to external services to do that for us. While in LWC, we have the option to use third-party js libraries, but that would be additional maintenance overhead.
ReplyDelete
Replies

Reply

	
Rahul GawaleOctober 11, 2020 at 7:07 PM
Wonderful! I have been looking for something like this for a long time. Thanks!
ReplyDelete
Replies

Reply

	
UnknownOctober 11, 2020 at 10:07 PM
Looking forward to many more articles
ReplyDelete
Replies

Reply

	
Fernando.FOctober 12, 2020 at 7:38 AM
Hi, mi PDF look like this.
"htmlattribute"Journey toSalesforce"htmlattribute"
Could you help me? nice explanation, by the way.
ReplyDelete
Replies

Reply

	
Chandramohan YetukuriOctober 12, 2020 at 10:11 AM
This comment has been removed by the author.
ReplyDelete
Replies

Reply

	
Chandramohan YetukuriOctober 12, 2020 at 10:13 AM
This comment has been removed by the author.
ReplyDelete
Replies

Reply

	
Chandramohan YetukuriOctober 12, 2020 at 10:15 AM
We need to add below two attributes to the meta file html page.

isExposed = True
target = lightning__AppPage

We need to add them in html format.
ReplyDelete
Replies

Reply

	
Subrata SfdcdevOctober 12, 2020 at 10:21 AM
Excellent article
ReplyDelete
Replies

Reply

	
TechsOctober 13, 2020 at 9:23 PM
Great article. So helpful for me like delelopers
ReplyDelete
Replies

Reply

	
UnknownOctober 18, 2020 at 11:13 PM
Really helpful article, Thank you.
ReplyDelete
Replies

Reply

Add comment

Load more...

Newer Post

Older Post

Home

Subscribe to:
Post Comments (Atom)

Santanu Boral

	

Santanu

	Salesforce MVP | 37x certified | Salesforce certified Application Architect, System Architect | Salesforce StackExchange Contributor | Kolkata Trailblazer Developer Group Leader | Journey2Salesforce Mentor

View my complete profile

Salesforce StackExchange Profile

Search This Blog

	

	

Salesforce Developer Blog

Blog Archive

	

 ►

2024

(3)
	

 ►

February

(2)

	

 ►

January

(1)

	

 ►

2023

(7)
	

 ►

December

(2)

	

 ►

October

(1)

	

 ►

September

(1)

	

 ►

June

(1)

	

 ►

May

(2)

	

 ►

2022

(13)
	

 ►

December

(2)

	

 ►

November

(1)

	

 ►

August

(1)

	

 ►

July

(2)

	

 ►

May

(2)

	

 ►

April

(1)

	

 ►

February

(2)

	

 ►

January

(2)

	

 ►

2021

(14)
	

 ►

December

(3)

	

 ►

November

(1)

	

 ►

October

(1)

	

 ►

September

(4)

	

 ►

July

(1)

	

 ►

May

(2)

	

 ►

March

(1)

	

 ►

February

(1)

	

 ▼

2020

(16)
	

 ►

November

(1)

	

 ▼

October

(1)
	Generate PDF from Salesforce Lightning Web Component

	

 ►

September

(2)

	

 ►

August

(2)

	

 ►

July

(3)

	

 ►

June

(1)

	

 ►

May

(1)

	

 ►

April

(2)

	

 ►

February

(2)

	

 ►

January

(1)

	

 ►

2019

(17)
	

 ►

December

(1)

	

 ►

November

(1)

	

 ►

October

(1)

	

 ►

September

(3)

	

 ►

August

(1)

	

 ►

July

(4)

	

 ►

May

(1)

	

 ►

April

(1)

	

 ►

March

(3)

	

 ►

January

(1)

	

 ►

2018

(14)
	

 ►

December

(1)

	

 ►

October

(1)

	

 ►

September

(1)

	

 ►

August

(1)

	

 ►

July

(3)

	

 ►

May

(1)

	

 ►

March

(3)

	

 ►

February

(1)

	

 ►

January

(2)

	

 ►

2017

(24)
	

 ►

December

(4)

	

 ►

November

(1)

	

 ►

October

(2)

	

 ►

July

(1)

	

 ►

June

(1)

	

 ►

May

(1)

	

 ►

April

(1)

	

 ►

March

(3)

	

 ►

February

(1)

	

 ►

January

(9)

	

Featured Post

Trailblazer Community Event: Kolkata Trailblazers Spring 24 Connect

 Motivation behind this 2 Trailblazers community groups have successfully organized in-person event on 24th February , 2024 and it has ...

Popular Posts

	

Generate PDF from Salesforce Lightning Web Component

 Motivation behind this I have been looking for this option to generate PDF file from Lightning Web Component (LWC) quite often. Salesforce...

	

Tips for passing Salesforce Data Cloud Consultant Certification

 Motivation behind this Salesforce has taken a great initiative on Data Cloud area (previously known as CDP) during Dreamforce 2023, which ...

	

Display Combobox values by Lightning Web Components and propagating events to Parent Aura Components

 Motivation behind this I have started exploring on Lightning Web Components (aka. LWC) lately and tried to answer this question at Stac...

	

Build Configurable Dynamic Table from Field Set using Lightning Web Component

 Motivation behind this I have been looking for building configurable Related list component using Field Set and Lightning Web Component. E...

	

Display data from CMS using Lightning Web Component

 Motivation behind this We know that from B2B Commerce Lightning we can use readymade Lightning Web Components available through B2B Lex an...

	

Easy way of building Multi-select Lookup Component using Lightning Web Components

 Motivation behind this I have received a requirement on multiple selection of items along with lookup functionality. I have gone throug...

	

Salesforce Lightning Web Components Cheat Sheet

 Motivation behind this Lately, I am exploring on Lightning Web Components and trying to find out one handy document which I didn't ...

	

Tips for passing Salesforce Contact Center Accredited Professional Certification

 Motivation behind this Salesforce has come up Contact Center AP certification and it is available from Partner Learning Camp (PLC). As pa...

	

Salesforce JavaScript Developer I Certification Cheat Sheet - 6 Pager

 Motivation behind this After passing JavaScript Developer I certification, I thought of preparing this cheat sheet which is a bridge betwe...

	

Upload Files to AWS S3 using Lightning Web Components

 Motivation behind this I was searching for a solution to upload files to AWS S3 from Lightning Web Components (LWC) . Through there ar...

	

Followers

Simple theme. Powered by Blogger.

